Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 16, 2026
- 
            Low-latency and low-power edge AI is crucial for Virtual Reality and Augmented Reality applications. Recent advances demonstrate that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve a superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can present system challenges for latency and energy efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and explore diverse execution schemas to efficiently execute these hybrid models. We introduce H4H-NAS, a two-stage Neural Architecture Search (NAS) framework to automate the design of efficient hybrid CNN/ViT models for heterogeneous edge systems featuring both NPU and CIM. We propose a two-phase incremental supernet training in our NAS framework to resolve gradient conflicts between sampled subnets caused by different types of blocks in a hybrid model search space. Our H4H-NAS approach is also powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN-ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet. Moreover, results from our algorithm/hardware co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing heterogeneous computing over baseline solutions. Overall, our framework guides the design of hybrid network architectures and system architectures for NPU+CIM heterogeneous systems.more » « lessFree, publicly-accessible full text available January 20, 2026
- 
            Memory latency and bandwidth are significant bottlenecks in designing in-memory indexes. Processing-in-memory (PIM), an emerging hardware design approach, alleviates this problem by embedding processors in memory modules, enabling low-latency memory access whose aggregated bandwidth scales linearly with the number of PIM modules. Despite recent work in balanced comparison-based indexes on PIM systems, building efficient tries for PIMs remains an open challenge due to tries' inherently unbalanced shape. This paper presents the PIM-trie, the first batch-parallel radix-based index for PIM systems that provides load balance and low communication under adversary-controlled workloads. We introduce trie matching-matching a query trie of a batch against the compressed data trie-as a key building block for PIM-friendly index operations. Our algorithm combines (i) hash-based comparisons for coarse-grained work distribution/elimination and (ii) bit-by-bit comparisons for fine-grained matching. Combined with other techniques (meta-block decomposition, selective recursive replication, differentiated verification), PIM-trie supports LongestCommonPrefix, Insert, and Delete in O(logP) communication rounds per batch and O(l/w) communication volume per string, where P is the number of PIM modules, l is the string length in bits, and w is the machine word size. Moreover, work and communication are load-balanced among modules whp, even under worst-case skew.more » « less
- 
            The performance of today's in-memory indexes is bottlenecked by the memory latency/bandwidth wall. Processing-in-memory (PIM) is an emerging approach that potentially mitigates this bottleneck, by enabling low-latency memory access whose aggregate memory bandwidth scales with the number of PIM nodes. There is an inherent tension, however, between minimizing inter-node communication and achieving load balance in PIM systems, in the presence of workload skew. This paper presents PIM-tree , an ordered index for PIM systems that achieves both low communication and high load balance, regardless of the degree of skew in data and queries. Our skew-resistant index is based on a novel division of labor between the host CPU and PIM nodes, which leverages the strengths of each. We introduce push-pull search , which dynamically decides whether to push queries to a PIM-tree node or pull the node's keys back to the CPU based on workload skew. Combined with other PIM-friendly optimizations ( shadow subtrees and chunked skip lists ), our PIM-tree provides high-throughput, (guaranteed) low communication, and (guaranteed) high load balance, for batches of point queries, updates, and range scans. We implement PIM-tree, in addition to prior proposed PIM indexes, on the latest PIM system from UPMEM, with 32 CPU cores and 2048 PIM nodes. On workloads with 500 million keys and batches of 1 million queries, the throughput using PIM-trees is up to 69.7X and 59.1x higher than the two best prior PIM-based methods. As far as we know these are the first implementations of an ordered index on a real PIM system.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
